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This paper describes a method for modifying explicit finite difference equations for 
the dynamic motion of a continuum to produce stress relaxation equations for static 
stress equilibrium. The equations modified are those of Wilkins, but the method is 
applicable to other finite difference codes. An artificial "stress diffusion" equation is 
used, in which successive displacements are toward stress equilibrium. Results of a 
two-dimensional numerical calculation are compared with an analytic solution. 

Most  methods for static equilibrium problems are restricted to the linear case. 
Explicit finite difference methods commonly used for dynamic problems can accept 
quite general material descriptions, such as plastic yielding and tensile cracking. 
This paper describes a simple modification that  converts an explicit dynamic 
method, such as Wilkins' [1], to a method for static equilibrium allowing the same 
generality of  material description. The modification is especially useful for finding 
a static stress distribution as an initial condition for a dynamic problem. 

In Wilkins' procedure, a two-dimensional continuous medium is divided up into 
quadrilateral zones. The mesh is Lagrangian, meaning that the intersections of  the 
grid lines, called grid points in this paper, move with the medium, and the 
quadrilateral zones distort with the medium. Displacements (or spatial coordinates) 
and velocity are defined at grid points, while stress and strain components are 
defined in the interiors of  zones. 

Four distinct steps are performed for each zone in each computational cycle. 
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1. From stress components in zones surrounding a grid point, find the 
unbalanced force on the grid point by a finite difference analog of the equation 

(1) 

where F~ is the unbalanced force per unit volume, Z'~j is the stress tensor, and g~ is 
the body force. 

2. Accelerate each grid point in the direction of the unbalanced force by 

82RJ~t2 = (I/p) F, ,  (2) 

where R is the displacement and p is density. 

3. From new displacements of grid points bounding each zone find increments 
of strain components for that zone by 

~ = ~((~[e~lex~) + (are~lOx,)) (3) 

where ~ is the strain rate tensor. 

4. From strain increments find new values of stress components by a material 
description. 

In the modification, the finite difference equations used to represent the relation 
between displacement of a continuum and strain (Step 3) and the relation between 
stress gradients and unbalanced force per unit volume (Step 1) are identical to 
those used by Wilkins for dynamic problems. Only the second of the four steps 
need be modified to produce a relaxation method for solving equilibrium problems. 

In equilibrium, the right side of Eq. (1) is zero: 

F, = 0. (4) 

A way to obtain an iterative scheme to solve for the equilibrium state, Eq. (4), 
is to introduce a nonphysical "stress diffusion" equation: 

(eR,/e~) = (l/p) F, (5) 

where z is an artificial variable with the dimensions of time squared, which we shall 
call "pseudotime" to avoid confusion with the real time t of Eq. (2). It will be 
shown that the solution of Eq. (5) approaches the solution of the equilibrium 
equation, Eq. (4), as pseudotime increases. From this point vector notation will be 
used. 

Since the "pseudovelocity," (0R/0T), is always in the direction of the local force 
density, the direction of displacement is toward local stress equilibrium. The local 
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"rate" of work, F �9 ~R/gr, is positive everywhere, so that the total potential energy 
decreases as pseudotime progresses. Any problem of static stress equilibrium may 
be formulated as a variational problem in which the solution minimizes total 
potential energy. The successive finite difference integrations of Eq. (5) correspond 
conceptually to successive variations in an application of the variational principle. 

In an elastic problem the solution minimizing potential energy is unique. In the 
case of a plastic material, the solution depends on the sequence of states leading 
up to the equilibrium state. Similarly, the equilibrium state reached in the present 
relaxation method will depend on the sequence of stress states traversed in the 
iteration. The accuracy with which a calculated equilibrium state reproduces an 
actual physical state will depend upon the degree to which the stress history of 
each zone matches the actual case. 

For an elastic material with small displacements the equations of these four 
distinct steps might be combined to relate displacement of each grid point to 
displacements of neighboring grid points. The resulting system of linear equations 
could be solved by any matrix iterative technique. The procedure, as it stands, is 
equivalent to a point Jacobi relaxation method, for displacement of each point is 

determined by displacements of neighboring points in the previous iteration. The 
stability criterion for the pseudotime step discussed later ensures that the relaxation 
factor does not exceed two. 

The cost in computer time for keeping the steps distinct is considerable. The 
method effectively recalculates the matrix elements in each iteration. Also, without 
combining the steps it is not possible to use faster iterative techniques such as 
Gauss-Seidel overrelaxation. However, there is much to be gained by keeping 
the steps distinct, for arbitrary stress-strain laws can be used. 

The procedure may be analyzed further for the special case of an elastic material. 
Consider the case of small displacements in an isotropic linear elastic solid with 
no body forces acting. Elasticity theory gives the appropriate form of Eq. (5) in 
Cartesian coordinates, 

(~ + ~) v ( v .  R) + ~WR ---- p(~a/~), (6) 

where A and/~ are the Lain6 elastic constants. Forming the curl and divergence of 
Eq. (6), and neglecting spatial variations of the mass density, one gets 

a ( v  • R)/~r = CT2W(v x R), CT ~ = i~/p; (7) 

~(V.  R ) / a .  = CL2W(V �9 R), eL ~ = (A + 2~)/p. (8) 

These two equations show that the curl and divergence of the displacement 
vector R, satisfy diffusion equations, with diffusion coefficients equal to the squares 
of the transverse and longitudinal sound speeds of the material. The essential 
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difference, then, between the solutions of the dynamic equation of motion, Eq. (2), 
and the static stress relaxation equation, Eq. (5), is that in the dynamic case stress 
waves propagate through the body and reflect from the boundaries, while in the 
static case, stress waves diffuse through the body toward an equilibrium state. 

In the nonlinear case, Eq. (5) will be a nonlinear diffusion equation. During the 
step-by-step integration of this equation, the diffusion equation stability criterion 
must be used. Taking the square of the longitudinal sound speed CL ~, as the 
diffusion coefficient, since this dictates a more conservative time step than Cr 2, this 
criterion is 

d r  <~ F/2CL 2, (9) 

where l is a length related to the size of the zones. For a two-dimensional quadri- 
lateral zone, for example, l is taken to be the area of the zone divided by the longest 
diagonal. The minimum AT found by applying Eq. (9) to all zones during one cycle 
of the computation is used as the time step for the next cycle. The static time step AT, 
is related to the time step At, appropriate for a dynamic case with the same 
instantaneous solution, by 

AT = �89 (10) 

An estimate of the number of cycles of iteration required for convergence to 
equilibrium can be made. In a diffusion problem with a diffusion coefficient of CL z 
the characteristic relaxation time T, of a body with a typical dimension L, is of the 
order 

T ~--- L2/2CL ~. (11) 

With Ar given by Eq. (9), it will take on the order of 

N = (L/I) 2 (12) 

cycles for the longest wavelength component of the error to decay. 
Stress boundary conditions are obtained, as in Wilkins, by applying appropriate 

stresses to the boundary zones. Displacement boundary conditions are obtained 
by moving the boundary points of the undisturbed object to the desired final 
displacement as the iteration proceeds. In the case of a plastic material, the 
boundary points should be moved slowly enough that boundary stresses do not 
exceed their equilibrium values. Otherwise, excess plastic yielding will occur at the 
boundary. 

Some insight into the stress diffusion equation can be gained by deriving it in 
another way. Suppose that the dynamic equation of motion, Eq. (2), is used to 
compute the motion of a continuum, but that at frequent intervals all velocities 
are set equal to zero, in order to avoid "over-shooting" equilibrium. Then the 
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stresses and displacements in the body ought to approach equilibrium, if the 
boundary conditions on the problem allow for an equilibrium state. This method 
of converging to equilibrium was used by Maenchen and Sack [2], who wanted 
to compare their dynamic TENSOR code's treatment of plasticity with an analytic 
solution, but only had available a static solution. They set all velocities equal to 
zero approximately twenty times during their calculation, and were able to get 
close agreement with the analytic solution. 

I f  this procedure is applied in its limit, where all velocities are set equal to zero 
at the beginning of each cycle, it is equivalent to solving the stress diffusion 
equation, Eq. (5). The use of  the stress diffusion equation is more amenable to 
theoretical analysis since it is equivalent to the familiar Jacobi relaxation method. 

To illustrate the stress diffusion relaxation method, the results of two numerical 
calculations are presented. The results of the first calculation, the indentation of an 
elastic solid by a rigid circular punch, are compared to its analytic solution. The 
second calculation is the same as the first, except that the effects of plasticity are 
included. 
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FIG. 1. Geometry and boundary conditions. 

This problem is of engineering importance in soil mechanics with respect to the 
safety of foundations, where the rigid punch represents a foundation footing and 
the semi-infinite solid is the soil upon which it rests. An analytic solution to the 
elastic problem is given by Sneddon [3]. The geometry and boundary conditions 
chosen for the numerical calculation are shown in Fig. 1. The stresses in all zones 
were zero at the start of the calculation. The grid points beneath the punch were 
gradually displaced downward during the calculation in such a way that the 
vertical stress applied by the center of the punch was always six bars. The problem 
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was run  for  1000 cycles. Dur ing  the last  100 cycles the stresses changed by  only a 

few percent .  
In  Fig. 2 the  d is t r ibut ion  o f  vert ical  stress in the layer  o f  zones beneath  the punch  

is c o m p a r e d  with the  analyt ic  solut ion at  t ha t  depth,  and  in Fig.  3 the d is t r ibu t ion  
o f  vert ical  stress a t  a dep th  of  app rox ima te ly  one punch  radius  is c o m p a r e d  with the 
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FIG. 2. Radial distribution of vertical stress at a depth of 0.0625 a, where a is the punch 
radius of 16 cm. The curve is normalized to the average vertical stress p, of 12 bars. 
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FIc. 3. Radial distribution of stress at a depth of 0.94 a, where a is the punch radius of 16 cm. 
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analytic solution. The numerical solutions agree with the analytic solution as 
closely as can be reasonably expected. The stress tensor at the end o f  the calculation 
is shown in Fig. 4. We see the vertical stress increasing near the edge o f  the punch  
as it does in the analytic solution. 
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FIG. 4. Equilibrium stress tensor in the elastic case. 

The second calculation is the same as the first, except that  the solid was allowed 
to yield plastically. This calculation illustrates the application o f  the relaxation 
method to a nonlinear problem. A M o h r - C o u l o m b  yield model was used to describe 
the plastic yielding, with a coefficient o f  friction o f  1.5. This problem converged 
somewhat  faster than the first calculation. The stress distribution after 1000 cycles 
o f  computa t ion  is shown in Fig. 5. The vertical stress under  the punch is nearly 
uniform, and at greater depths the stress is no t  spread out  as much as in the 
elastic case. 
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FIG. 5. Equilibrium stress tensor in the plastic case. 
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